skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Venkataramanan, Anjana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Nanoparticle shape has emerged as a key regulator of nanoparticle transport across physiological barriers, intracellular uptake, and biodistribution. We report a facile approach to synthesize ellipsoidal nanoparticles through self‐assembly of poly(glycerol sebacate)‐co‐poly(ethylene glycol) (PGS‐co‐PEG). The PGS‐PEG nanoparticle system is highly tunable, and the semiaxis length of the nanoparticles can be modulated by changing PGS‐PEG molar ratio and incorporating therapeutics. As both PGS and PEG are highly biocompatible, the PGS‐co‐PEG nanoparticles show high hemo‐, immuno‐, and cytocompatibility. Our data suggest that PGS‐co‐PEG nanoparticles have the potential for use in a wide range of biomedical applications including regenerative medicine, stem cell engineering, immune modulation, and cancer therapeutics. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2048–2058, 2018. 
    more » « less